Guidance of callosal axons by radial glia in the developing cerebral cortex.
نویسندگان
چکیده
During development, columns of the mammalian cerebral cortex are formed by migration of neurons along fascicles of radial glia. Subsequently, axons of the corpus callosum connect reciprocal regions of each cerebral hemisphere. To determine whether the radial growth of callosal afferents through the developing cortex may be guided by particular cellular elements, we examined the ultrastructural relationship between callosal afferents and radial fibers in the early postnatal hamster sensorimotor cortex. Developing callosal axons and their growth cones were labeled with HRP injected into the cortex at 3 d postnatal when the growth cones have extended across the callosum and are just entering the contralateral cortex. An EM analysis of 30 HRP-labeled axons and their growth cones revealed that they extended upon fascicles of radial processes associated with migrating neurons. Reconstruction of seven of these growth cones, serially sectioned in their entirety, showed that growth cones were associated with the same radial fascicle as their axon. Growth cones also touched other cellular elements such as axons. However, the finding that callosal afferents, from the point at which they enter the cortex to their growth cones, were apposed to a continuous fascicle of radial fibers suggests that callosal axons are tracking along radial processes. We conclude that the majority of the radial processes within fascicles are likely to be glial, based on their relatively large diameters, electron-lucent cytoplasm with a regular array of microtubules, the presence of glycogen granules, occasional cytoplasmic protrusions lacking microtubules, and their consistent association with migrating neurons. We propose therefore that radial glia may serve a guidance function for growing callosal axons in their radial trajectory through the developing cerebral cortex.
منابع مشابه
Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion.
The left and right sides of the nervous system communicate via commissural axons that cross the midline during development using evolutionarily conserved molecules. These guidance cues have been particularly well studied in the mammalian spinal cord, but it remains unclear whether these guidance mechanisms for commissural axons are similar in the developing forebrain, in particular for the corp...
متن کاملNpgrj_NN_1705 787..797
Midline astroglia in the cerebral cortex develop earlier than other astrocytes through mechanisms that are still unknown. We show that radial glia in dorsomedial cortex retract their apical endfeet at midneurogenesis and translocate to the overlaying pia, forming the indusium griseum. These cells require the fibroblast growth factor receptor 1 (Fgfr1) gene for their precocious somal translocati...
متن کاملAxon Guidance Mechanisms for Establishment of Callosal Connections
Numerous studies have investigated the formation of interhemispheric connections which are involved in high-ordered functions of the cerebral cortex in eutherian animals, including humans. The development of callosal axons, which transfer and integrate information between the right/left hemispheres and represent the most prominent commissural system, must be strictly regulated. From the beginni...
متن کاملDynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy.
During development, axons of the mammalian corpus callosum must navigate across the midline to establish connections with corresponding targets in the contralateral cerebral cortex. To gain insight into how growth cones of callosal axons respond to putative guidance cues along this CNS pathway, we have used time-lapse video microscopy to observe dynamic behaviors of individual callosal growth c...
متن کاملRadial Glial Dependent and Independent Dynamics of Interneuronal Migration in the Developing Cerebral Cortex
Interneurons originating from the ganglionic eminence migrate tangentially into the developing cerebral wall as they navigate to their distinct positions in the cerebral cortex. Compromised connectivity and differentiation of interneurons are thought to be an underlying cause in the emergence of neurodevelopmental disorders such as schizophrenia. Previously, it was suggested that tangential mig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 11 شماره
صفحات -
تاریخ انتشار 1991